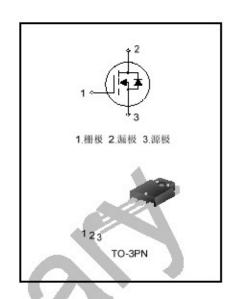


23A、500V N沟道增强型场效应管

描述

SVF23N50PN 是 N 沟道增强型高压功率 MOS 场效应晶体管,采用SL电子的 F-Cellm 平面高压 VDMOS 工艺技术制造。先进的工艺及条状的原胞设计结构使得该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。

该产品可广泛应用于 $AC ext{-}DC$ 开关电源, $DC ext{-}DC$ 电源转换器,高压 H 桥 PWM 马达驱动。


特点

低栅极电荷量

低反向传输电容

开关速度快

提升了 dv/dt 能力

命名规则

<u>SVFXNEXXX</u> 士兰F-Cell工艺 VDMOS产品标识

额定电流标识,采用1-2位数字; 例如:4 代表 4A,20 代表 20A, 08 代表 0.8A

沟道极性标识,N代表N沟道

例如: PN: TO-3PN 额定耐压值,采用2位数字

封装外形标识

例如: 50表示500V,65表示650V

特殊功能、规格标识,通常省略 例如: E表示内置了ESD保护结构

产品规格分类

产品名称	封装形式	打印名称	材料	包装	
SVF23N50PN	TO-3PN	23N50	无铅	料管	

极限参数(除非特殊说明, Tc=25 C)

参数名称		符号	参数范围	单位	
漏源电压		Vds	500	V	
栅源电压		Vgs	±30	V	
漏极电流	Tc=25°C	lb	23.0	_	
	Tc=100°C		14.5	Α	
漏极脉冲电流		Ідм	92.0	А	
耗散功率(Tc =25 C)		_	252	W	
- 大于 25 C 每摄氏度减少		Pb	2.02	W/ C	
单脉冲雪崩能量(注 1)		Eas	1596	mJ	
工作结温范围		TJ	-55∼+150	C	
贮存温度范围		Tstg	-55∼+150	C	

热阻特性

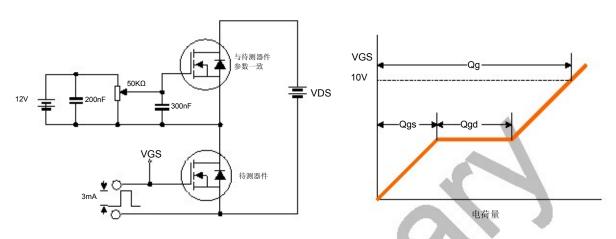
参数名称	符号	参数范围	单位
芯片对管壳热阻	Rejc	0.50	C/W
芯片对环境的热阻	Reja	50	C/W

电性参数(除非特殊说明, Tc=25 C)

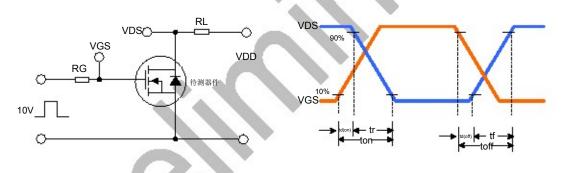
参数	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	Bvdss	V _{GS} =0V, I _D =250μA	500			V
漏源漏电流	IDSS	V _{DS} =500V, V _{GS} =0V			1.0	μA
栅源漏电流	lgss	VGS=±30V, VDS=0V		3 	±100	μΑ
栅极开启电压	VGS(th)	VGS= VDS, ID=250µA	2.0		4.0	V
导通电阻	RDS(on)	Vgs=10V, Ip=11.5A		0.20	0.27	
输入电容	Ciss			2687.7		
输出电容	Coss	V _{DS} =25V, V _{GS} =0V,		355.0		pF
反向传输电容	Crss	f=1.0MHz		10.3		
开启延迟时间	td(on)	V _{DD} =250V, R _G =10 ,		27.2		
开启上升时间	tr	ID=23.0A		47.5		
关断延迟时间	td(off)			78.7		ns
关断下降时间	tf	(注 2, 3)		41.1	-	
栅极电荷量	Qg	V _{DD} =400V, V _{GS} =10V,		49.50	-	
栅极-源极电荷量	Qgs	ID=23.0A		14.28		nC
栅极-漏极电荷量	\mathbf{Q}_{gd}	(注 2, 3)		16.95		

源-漏二极管特性参数

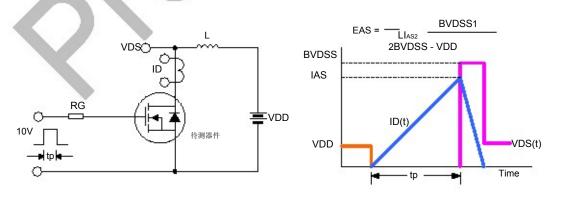
参数	符号	测试条件	最小值	典型值	最大值	单位
源极电流	/ Is	MOS 管中源极、漏极构成的			23.0	
源极脉冲电流	Іѕм	反偏 P-N 结			92.0	Α
源-漏二极管压降	VsD	Is=23.0A, V _G s=0V			1.4	V
反向恢复时间	Trr	Is=23.0A, V _G s=0V,		570.3		ns
反向恢复电荷	Qrr	dlғ/dt=100A/µS (注 2)		7.35		μC

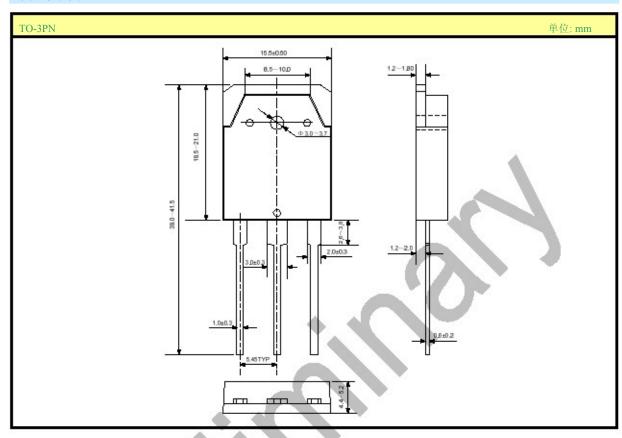

注:

- 1. L=30mH,Ias=11.4A,Vdd=50V,Rg=25 ,开始温度 T $_{J}$ =25 C;
- 脉冲测试: 脉冲宽度≤300μs, 占空比≤2%;
- 3. 基本上不受工作温度的影响。



典型测试电路


栅极电荷量测试电路及波形图


开关时间测试电路及波形图

EAS测试电路及波形图

封装外形图

SL保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。

任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!

产品提升永无止境, 我公司将竭诚为客户提供更优秀的产品!